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Abstract State Machines (ASMs) [Gur95] have been widely used to specify soft-
ware and hardware systems. Only a few of these specifications are executable,
although there are several interpreters and some compilers for ASMs.

At Siemens Corporate Technology a part of the FALKO project [BPS00]
was designed with ASMs. The specification for that part was written in ASM-
SL [Cas99] which can be interpreted by the ASM Workbench [Cas00]. The
Workbench was useful to debug the specification, but too slow for full test
cases of FALKO. The question arose whether the code for the final product
release had to be coded by hand or if it was possible to generate the C++ code
from the specification automatically. For an automatic code generation, the
following constraints had to be fulfilled by a compiler:

1. The specification was already written in ASM-SL and the compiler should
use the same input for code generation. Otherwise the specification would
have to be rewritten in a different syntax, maybe with a slightly different
semantics.

2. The part designed with ASMs was one component in the FALKO project
and not a standalone application. Thus, the generated code had to in-
teract with other components of FALKO. The other components were
written in C++ and therefore the compiler had to generate C++ code,
too.

3. The generated code had to be fast enough for the product release. It
should also be possible to debug the generated code, because otherwise
it would be nearly impossible to locate errors in large runs.

There was no compiler which fulfilled these constraints. Therefore, we de-
cided to build a new compiler and see whether the generated code could be
used. And in fact, the generated code is used since two years and no bugs in
the compilation scheme from ASM-SL to C++ have been detected up to now.
This code generation is subject of the following paragraphs.

The task of the compiler is to translate an ASM specification written in
ASM-SL to C++ code such that the semantics is preserved. This translation is
complicated, because the two languages are at some points very different. We



now briefly describe both languages to show the differences and explain how
the translation works.

A specification in ASM-SL can be divided into a dynamic part and a static
part. The dynamic part of the language is built up from ASM rules whose
semantics is described in the Lipari Guide [Gur95]. Roughly speaking, a rule
consists of guarded function updates which are executed in parallel. A function
update assigns a new value for a given function symbol at the given arguments.
For example, f (x , y) := 5 is a function update for the function symbol f with
arity 2 at the arguments x and y .

The static part of the specification can be defined in terms of functions and
the syntax used in ASM-SL is very similar to Standard ML, a functional pro-
gramming language with abstract data types, pattern matching, overloading,
let-expressions, garbage collection, etc. ASM-SL is a strongly typed language,
but each expression may also evaluate to the special value undef, even if the
expression is of basic type integer .

C++ is an object oriented programming language where all statements are
executed sequentially. C++ supports classes, which group code (methods) and
data (variables) to one structure. There are a lot of efficient libraries for C++,
like the Standard Template Library (STL) which contains data structures for
trees, sets, lists, . . . and algorithms based on these data structures for sorting,
iterating, etc. In C++, memory has to be allocated and deallocated manually,
i.e. there is no garbage collection like in functional programming languages.
There is also no pattern matching and variables can be introduced only at the
level of statements. In a functional programming language new variables can
be introduced by let in every expression.

Due to the differences of both languages, the compiler has to perform three
transformations, namely parallel assignments to sequential assignments, func-
tional expressions to imperative statements, and dynamic functions to data
structures in C++. In the remaining paragraphs we describe these transla-
tions.

One of the main advantages of ASMs is the parallel execution of all rules
where the updates are applied simultaneously. In C++, all statements are ex-
ecuted sequentially. There are several possibilities to simulate parallel assign-
ments. For example, execute each rule, gather the updates and after execution
of all rules, check consistency of the update set and apply it in case it is consis-
tent. Such a solution is not very efficient if there are many updates. A better
solution is to duplicate each variable. For a nullary dynamic function f in the
ASM specification, we introduce variables fold and fnew in the C++ program.
When reading the function f , we take the variable fold . On the other hand,
updates are applied to fnew . Thus the sequential execution of the rules (meth-
ods) in C++ has the same result as if they would be executed in parallel. This
works fine for one execution step, but for the next execution step the new value
fnew has somehow to be moved to fold . This could be done by looping through
all variables, but it is also possible without moving anything, when fnew and
fold are implemented in a clever way.

The translation from functional expressions to imperative statements is
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more complicated. For example, consider the following functional case ex-
pression with pattern matching

case (xs, ys) of
([a], [b, 5])→ [a, b]
([a, b], [c])→ . . .

where the first case from top to bottom has to be selected which matches the
case expression. We do not want to go into details, but let us point out some
of the difficulties.

The example above is an expression and can occur everywhere where an
expression of the corresponding type is accepted. The above case expression
introduces new variables which have to be assigned according to the pattern.
In C++, neither can variables be introduced in expressions, nor can they be
assigned to a data structure. For example, (a, b) = (3, 5) is not a valid assign-
ment.

Another problem concerns garbage collection. In a functional language,
data structures are created on the fly and are available as long as they are
needed. For example, the expression [a, b] creates a list of two elements. This
list object will be removed by the garbage collector if the expression is no longer
needed. C++ has no garbage collection and a program which allocates memory
but does not deallocate it, would need a huge amount of memory.

The translation from dynamic functions to data structures in C++ is simple.
Nullary dynamic functions are variables. Dynamic functions with arity 1 can
be implemented by arrays, hash arrays, trees, etc. Functions with arity n > 1
can be implemented like functions with arity 1 where we pack the n arguments
to one type. In functional languages this is called currying.

The described transformations are implemented in our compiler which was
successfully used to automatically generate C++ code from the ASM specifica-
tion for the FALKO project. The compiler itself is written in Haskell.
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